首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8347篇
  免费   403篇
  国内免费   805篇
  2024年   5篇
  2023年   82篇
  2022年   92篇
  2021年   133篇
  2020年   131篇
  2019年   140篇
  2018年   154篇
  2017年   119篇
  2016年   174篇
  2015年   173篇
  2014年   401篇
  2013年   474篇
  2012年   331篇
  2011年   332篇
  2010年   280篇
  2009年   375篇
  2008年   416篇
  2007年   413篇
  2006年   419篇
  2005年   418篇
  2004年   368篇
  2003年   388篇
  2002年   368篇
  2001年   293篇
  2000年   246篇
  1999年   251篇
  1998年   231篇
  1997年   219篇
  1996年   180篇
  1995年   210篇
  1994年   192篇
  1993年   180篇
  1992年   208篇
  1991年   150篇
  1990年   138篇
  1989年   122篇
  1988年   133篇
  1987年   101篇
  1986年   95篇
  1985年   91篇
  1984年   106篇
  1983年   55篇
  1982年   67篇
  1981年   32篇
  1980年   16篇
  1979年   18篇
  1978年   10篇
  1977年   8篇
  1976年   8篇
  1973年   4篇
排序方式: 共有9555条查询结果,搜索用时 0 毫秒
1.
Since the first revelation of proteins functioning as macromolecular machines through their three dimensional structures, researchers have been intrigued by the marvelous ways the biochemical processes are carried out by proteins. The aspiration to understand protein structures has fueled extensive efforts across different scientific disciplines. In recent years, it has been demonstrated that proteins with new functionality or shapes can be designed via structure-based modeling methods, and the design strategies have combined all available information — but largely piece-by-piece — from sequence derived statistics to the detailed atomic-level modeling of chemical interactions. Despite the significant progress, incorporating data-derived approaches through the use of deep learning methods can be a game changer. In this review, we summarize current progress, compare the arc of developing the deep learning approaches with the conventional methods, and describe the motivation and concepts behind current strategies that may lead to potential future opportunities.  相似文献   
2.
To effectively integrate DNA sequence analysis and classical nematode taxonomy, we must be able to obtain DNA sequences from formalin-fixed specimens. Microdissected sections of nematodes were removed from specimens fixed in formalin, using standard protocols and without destroying morphological features. The fixed sections provided sufficient template for multiple polymerase chain reaction-based DNA sequence analyses.  相似文献   
3.
Three DNA fragments, trs1, 2 and 3, were isolated from the Trichoderma reesei genome on the basis of their ability to promote autonomous replication of plasmids in Saccharomyces cerevisiae. Each trs element bound specifically to the isolated T. reesei nuclear matrix in vitro, and two of them bound in vivo, indicating that they are matrix attachment regions (MARs). A similar sequence previously isolated from Aspergillus nidulans (ans1) was also shown to bind specifically to the T. reesei nuclear matrix in vitro. The T. reesei MARs are AT-rich sequences containing 70%, 86% and 73% A+T over 2.9, 0.8 and 3.7 kb, respectively for trs1, 2 and 3. They exhibited no significant sequence homology, but were shown to contain a number of sequence motifs that occur frequently in many MARs identified in other eukaryotes. However, these motifs occurred as frequently in the trs elements as in randomly generated sequences with the same A+T content. trs1 and 3 were shown to be present as single copies in the T. reesei genome. The presence of the trs elements in transforming plasmids enhanced the frequency of integrative transformation of T. reesei up to five fold over plasmids without a trs. No evidence was obtained to suggest that the trs elements promoted efficient replication of plasmids in T. reseei. A mechanism for the enhancement of transformation frequency by the trs elements is proposed. Received: 1 March 1997 / Accepted: 13 May 1997  相似文献   
4.
5.
6.
Abstract We have analyzed the sequence downstream of rpoN from Zcinetobacter calcoaceticus and identified an open reading frame encoding a protein with high similarity to UDP- N -acetylgucosamine 1-carboxyvinyl-transferase (MurZ). Multicopy plasmids encoding this enzyme conferred phosphomycin resistance to A. calcoaceticus . The polar effect of a rpoN mutation on the phosphomycin resistance level suggests that murZ is, in part, cotranscribed with rpoN . These observations confirm that A. calcoaceticus represents the first exceptin from a conserved genetic context of rpoN observed in several other Gram-negative bacteria.  相似文献   
7.
Nucleotide sequence of the ethidium efflux gene from Escherichia coli   总被引:4,自引:0,他引:4  
The nucleotide sequence of the gene specifying the ethidium efflux system of Escherichia coli has been determined. The translated open reading frame has identified a membrane-bound polypeptide of 110 amino acids (11,960 Da) which shares 42% identity with a staphylococcal protein specifying resistance to ethidium.  相似文献   
8.
The first 12 NH2-terminal amino acids of the Pseudomonas putida putidaredoxin reductase were shown to be Met-Asn-Ala-Asn-Asp-Asn-Val-Val-Ile-Val-Gly-Thr. Comparison of these data with the DNA sequence of the BamHI-HindIII 197-base fragment derived from the PstI 2.2-kb fragment obtained from the P. putida plasmid showed that the putidaredoxin reductase gene was downstream from the cytochrome P-450 gene and the intergenic region had the 24-nucleotide sequence TAAACACATGGGAGTGCGTGCTAA. The Shine-Dalgarno sequence GGAG was detected in this region. The initiating triplet for the reductase gene was GTG, which normally codes for valine, but in the initiating codon position codes for methionine. From the amino acid sequence and X-ray data comparisons with other flavoproteins, what appears to be the AMP binding region of the FAD can be recognized in the NH2-terminal portion of the reductase involving residues 5–35.This article was presented during the proceedings of the International Conference on Macromolecular Structure and Function, held at the National Defence Medical College, Tokorozawa, Japan, December 1985.  相似文献   
9.
10.
Identifying protein–protein and other proximal interactions is central to dissecting signaling and regulatory processes in cells. BioID is a proximity-dependent biotinylation method that uses an “abortive” biotin ligase to detect proximal interactions in cells in a highly reproducible manner. Recent advancements in proximity-dependent biotinylation tools have improved efficiency and timing of labeling, allowing for measurement of interactions on a cellular timescale. However, issues of size, stability, and background labeling of these constructs persist. Here we modified the structure of BioID2, derived from Aquifex aeolicus BirA, to create a smaller, highly active, biotin ligase that we named MicroID2. Truncation of the C terrminus of BioID2 and addition of mutations to alleviate blockage of biotin/ATP binding at the active site of BioID2 resulted in a smaller and highly active construct with lower background labeling. Several additional point mutations improved the function of our modified MicroID2 construct compared with BioID2 and other biotin ligases, including TurboID and miniTurbo. MicroID2 is the smallest biotin ligase reported so far (180 amino acids [AAs] for MicroID2 versus 257 AAs for miniTurbo and 338 AAs for TurboID), yet it demonstrates only slightly less labeling activity than TurboID and outperforms miniTurbo. MicroID2 also had lower background labeling than TurboID. For experiments where precise temporal control of labeling is essential, we in addition developed a MicroID2 mutant, termed lbMicroID2 (low background MicroID2), that has lower labeling efficiency but significantly reduced biotin scavenging compared with BioID2. Finally, we demonstrate utility of MicroID2 in mass spectrometry experiments by localizing MicroID2 constructs to subcellular organelles and measuring proximal interactions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号